5,983 research outputs found

    Residence time statistics for NN blinking quantum dots and other stochastic processes

    Full text link
    We present a study of residence time statistics for NN blinking quantum dots. With numerical simulations and exact calculations we show sharp transitions for a critical number of dots. In contrast to expectation the fluctuations in the limit of N→∞N \to \infty are non-trivial. Besides quantum dots our work describes residence time statistics in several other many particle systems for example NN Brownian particles. Our work provides a natural framework to detect non-ergodic kinetics from measurements of many blinking chromophores, without the need to reach the single molecule limit

    The longest excursion of stochastic processes in nonequilibrium systems

    Full text link
    We consider the excursions, i.e. the intervals between consecutive zeros, of stochastic processes that arise in a variety of nonequilibrium systems and study the temporal growth of the longest one l_{\max}(t) up to time t. For smooth processes, we find a universal linear growth \simeq Q_{\infty} t with a model dependent amplitude Q_\infty. In contrast, for non-smooth processes with a persistence exponent \theta, we show that < l_{\max}(t) > has a linear growth if \theta \sim t^{1-\psi} if \theta > \theta_c. The amplitude Q_{\infty} and the exponent \psi are novel quantities associated to nonequilibrium dynamics. These behaviors are obtained by exact analytical calculations for renewal and multiplicative processes and numerical simulations for other systems such as the coarsening dynamics in Ising model as well as the diffusion equation with random initial conditions.Comment: 4 pages,2 figure

    Exact Persistence Exponent for One-dimensional Potts Models with Parallel Dynamics

    Full text link
    We obtain \theta_p(q) = 2\theta_s(q) for one-dimensional q-state ferromagnetic Potts models evolving under parallel dynamics at zero temperature from an initially disordered state, where \theta_p(q) is the persistence exponent for parallel dynamics and \theta_s(q) = -{1/8}+ \frac{2}{\pi^2}[cos^{-1}{(2-q)/q\sqrt{2}}]^2 [PRL, {\bf 75}, 751, (1995)], the persistence exponent under serial dynamics. This result is a consequence of an exact, albeit non-trivial, mapping of the evolution of configurations of Potts spins under parallel dynamics to the dynamics of two decoupled reaction diffusion systems.Comment: 13 pages Latex file, 5 postscript figure
    • …
    corecore